Почему иммунитет атакует собственные клетки. Аутоиммунный бунт конца жизни. Меры по укреплению иммунитета

Около 5% населения Земли страдают аутоиммунными заболеваниями - состоянием, при котором собственные клетки иммунной системы организма вместо того, чтобы бороться с патогенами, уничтожают нормальные клетки органов и тканей. В этой статье, предваряющей спецпроект по аутоиммунным заболеваниям, мы рассмотрим основные принципы работы иммунной системы и покажем, почему возможна такая диверсия с ее стороны.

Этой статьей мы начинаем цикл по аутоиммунным заболеваниям - болезням, при которых организм начинает бороться сам с собой, вырабатывая аутоантитела и/или аутоагрессивные клоны лимфоцитов. Мы расскажем о том, как работает иммунитет и почему иногда он начинает «стрелять по своим». Некоторым самым распространенным заболеваниям будут посвящены отдельные публикации. Для соблюдения объективности мы пригласили стать куратором спецпроекта доктора биологических наук, чл.-корр. РАН, профессора кафедры иммунологии МГУ Дмитрия Владимировича Купраша . К тому же у каждой статьи есть свой рецензент, более детально вникающий во все нюансы. Рецензентом этой - вводной - статьи стал Евгений Сергеевич Шилов , кандидат биологических наук, научный сотрудник этой же кафедры.

Антигены - любые вещества, которые организм воспринимает как чужеродные и, соответственно, отвечает на их появление активацией иммунитета. Самыми важными для иммунной системы антигенами являются кусочки молекул, расположенных на внешней поверхности патогена. По этим кусочкам можно определить, какой именно агрессор напал на организм, и обеспечить борьбу с ним.

Цитокины - азбука Морзе организма

Для того чтобы иммунные клетки могли скоординировать свои действия в борьбе с врагом, им необходима система сигналов, сообщающих, кому и когда вступать в бой, или заканчивать битву, или, наоборот, возобновлять ее, и многое-многое другое. Для этих целей клетками вырабатываются небольшие белковые молекулы - цитокины , например, различные интерлейкины (IL-1, 2, 3 и т.д.) . Многим цитокинам сложно приписать однозначную функцию, однако с некоторой степенью условности их можно разделить на пять групп: хемокины, факторы роста, про воспалительные, противо воспалительные и иммунорегуляторные цитокины.

Упомянутая выше условность классификации означает, что цитокин, входящий в одну из перечисленных групп, при определенных условиях в организме может сыграть диаметрально противоположную роль - например, из провоспалительного превратиться в противовоспалительный.

Без налаженной связи между видами войск любая хитроумная военная операция обречена на провал, поэтому клеткам иммунной системы очень важно, принимая и отдавая приказы в виде цитокинов, правильно их интерпретировать и слаженно действовать. Если цитокиновые сигналы начинают вырабатываться в очень большом количестве, то в клеточных рядах наступает паника, что может привести к повреждению собственного организма. Это называется цитокиновым штормом : в ответ на поступающие цитокиновые сигналы клетки иммунной системы начинают продуцировать всё больше и больше собственных цитокинов, которые, в свою очередь, действуют на клетки и усиливают секрецию самих себя. Формируется замкнутый круг, который приводит к разрушению окружающих клеток, а позже и соседних тканей.

По порядку рассчитайсь! Иммунные клетки

Как в вооруженных силах существуют разные рода войск, так и клетки иммунной системы можно разделить на две большие ветви - врожденного и приобретенного иммунитета, за изучение которых в 2011 году была вручена Нобелевская премия , . Врожденный иммунитет - та часть иммунной системы, что готова защищать организм немедленно, как только совершилось нападение патогена. Приобретенный же (или адаптивный ) иммунный ответ при первом контакте с врагом разворачивается дольше, так как требует хитроумной подготовки, но зато после может осуществлять более сложный сценарий защиты организма. Врожденный иммунитет очень эффективен в борьбе с единичными диверсантами: он обезвреживает их, не беспокоя специализированные элитные воинские подразделения - адаптивный иммунитет. Если же угроза оказалась более существенной и есть риск проникновения патогена всё глубже в организм, клетки врожденного иммунитета немедленно сигнализируют об этом, и в бой вступают клетки иммунитета приобретенного.

Все иммунные клетки организма образуются в костном мозге от кроветворной стволовой клетки , которая дает начало двум клеткам - общему миелоидному и общему лимфоидному предшественникам , . Клетки приобретенного иммунитета происходят от общего лимфоидного предшественника и, соответственно, называются лимфоцитами , тогда как клетки врожденного иммунитета могут брать начало от обоих предшественников. Схема дифференцировки клеток иммунной системы изображена на рисунке 1.

Рисунок 1. Схема дифференцировки клеток иммунной системы. Кроветворная стволовая клетка дает начало клеткам - предшественницам миелоидной и лимфоидной линий дифференцировки, из которых дальше образуются все типы клеток крови.

Врожденный иммунитет - регулярная армия

Клетки врожденного иммунитета распознают патоген по специфичным для него молекулярным маркерам - так называемым образам патогенности . Эти маркеры не позволяют точно определить принадлежность патогена к тому или иному виду, а лишь сигнализируют о том, что иммунитет столкнулся с чужаками. Для нашего организма подобными маркерами могут служить фрагменты клеточной стенки и жгутиков бактерий, двухцепочечная РНК и одноцепочечная ДНК вирусов, и т.д. При помощи специальных рецепторов врожденного иммунитета, таких как TLR (Toll-like receptors , Толл-подобные рецепторы) и NLR (Nod-like receptors , Nod-подобные рецепторы), клетки взаимодействуют с образами патогенности и приступают к реализации своей защитной стратегии.

Теперь подробнее рассмотрим некоторые клетки врожденного иммунитета.

Для того чтобы понять, как работает Т-клеточный рецептор, надо вначале немного обсудить еще одно важное семейство белков - главный комплекс гистосовместимости (MHC , major histocompatibility complex ) . Эти белки - молекулярные «пароли» организма, позволяющие клеткам иммунной системы отличать своих соотечественников от неприятеля. В любой клетке постоянно идет процесс деградации белков. Специальная молекулярная машина - иммунопротеасома - расщепляет белки на короткие пептиды, которые могут быть встроены в MHC и, как яблочко на тарелочке, преподнесены Т-лимфоциту. Тот при помощи TCR «видит» пептид и распознает, принадлежит ли он собственным белкам организма или является чужеродным. Одновременно TCR проверяет, знакома ли ему молекула MHC, - это позволяет отличать собственные клетки от «соседских», то есть клеток того же вида, но другой особи. Именно совпадение молекул MHC необходимо для приживления пересаженных тканей и органов, отсюда и такое мудреное название: histos по-гречески означает «ткань». У человека молекулы MHC также называются HLA (human leukocyte antigen - человеческий лейкоцитарный антиген).

Видео 2. Кратковременные взаимодействия Т-клеток с дендритной клеткой (обозначена зеленым ).

T-лимфоциты

Для активации Т-лимфоцита нужно, чтобы он получил три сигнала. Первый из них - взаимодействие TCR с MHC, то есть распознавание антигена. Второй - так называемый костимуляторный сигнал, передающийся антигенпрезентирующей клеткой через молекулы CD80/86 на СD28, находящуюся на лимфоците. Третий же сигнал - продукция коктейля из множества провоспалительных цитокинов. Если какой-то из этих сигналов ломается, это чревато серьезными последствиями для организма, например, реакцией аутоиммунитета.

Существует два типа молекул главного комплекса гистосовместимости: MHC-I и MHC-II. Первый присутствует на всех клетках организма и несет на себе пептиды клеточных белков или же белков заразившего ее вируса. Специальный подтип Т-клеток - Т-киллеры (их еще называют CD8+ Т-лимфоциты) - своим рецептором взаимодействует с комплексом «MHC-I-пептид». Если это взаимодействие достаточно сильное, значит, пептид, который видит Т-клетка, не характерен для организма и, соответственно, может принадлежать внедрившемуся в клетку врагу - вирусу. Необходимо срочно обезвредить нарушителя границ, и Т-киллер отлично справляется с этой задачей. Он, подобно NK-клетке, выделяет белки перфорин и гранзим, что приводит к лизису клетки-мишени.

Т-клеточный рецептор другого подтипа Т-лимфоцитов - Т-хелперов (Th-клетки, CD4+ T-лимфоциты) - взаимодействует с комплексом «MHC-II-пептид». Это комплекс есть не на всех клетках организма, а в основном на иммунных, и пептиды, которые могут презентироваться молекулой MHC-II, являются фрагментами патогенов, захваченных из внеклеточного пространства. Если Т-клеточный рецептор взаимодействует с комплексом «MHC-II-пептид», то Т-клетка начинает продуцировать хемокины и цитокины, помогающие другим клеткам эффективно осуществлять свою функцию - борьбу с врагом. Потому-то эти лимфоциты и называются хелперами - от английского helper (помощник). Среди них выделяют множество подтипов, которые различаются спектром вырабатываемых цитокинов и, следовательно, ролью в иммунном процессе. Например, существуют Th1-лимфоциты, эффективные в борьбе с внутриклеточными бактериями и простейшими, Th2-лимфоциты, помогающие В-клеткам в работе и потому важные для противостояния внеклеточным бактериям (о чём мы скоро поговорим), Th17-клетки и многие другие.

Видео 3. Движение Т-хелперов (красные ) и Т-киллеров (зеленые ) в лимфоузле. Видео снято при помощи прижизненной двухфотонной микроскопии.

Среди CD4+ T-клеток существует особый подтип клеток - регуляторные Т-лимфоциты . Их можно сравнить с военной прокуратурой, сдерживающей фанатизм рвущихся в бой солдат и не дающей им причинить вред мирному населению. Эти клетки продуцируют цитокины, подавляющие иммунный ответ, и таким образом ослабляют иммунную реакцию, когда враг повержен.

То, что Т-лимфоцит распознает только чужеродные антигены, а не молекулы собственного организма, является следствием хитроумного процесса, называемого селекцией . Она происходит в специально созданном для этого органе - тимусе , где завершают свое развитие Т-клетки. Суть селекции такова: клетки, окружающие юный, или наивный, лимфоцит, показывают (презентируют) ему пептиды собственных белков. Тот лимфоцит, который слишком хорошо или слишком плохо узнает эти белковые фрагменты, уничтожается. Выжившие же клетки (а это менее 1% всех предшественников Т-лимфоцитов, пришедших в тимус) обладают промежуточным сродством к антигену, следовательно, они, как правило, не считают собственные клетки мишенями для атаки, но имеют возможность среагировать на подходящий чужеродный пептид. Селекция в тимусе - механизм так называемой центральной иммунологической толерантности .

Существует также периферическая иммунологическая толерантность . При развитии инфекции на дендритную клетку, как и на любую клетку врожденного иммунитета, действуют образы патогенности. Только после этого она может созреть, начать экспрессировать на своей поверхности дополнительные молекулы для активации лимфоцита и эффективно представлять антигены Т-лимфоцитам. Если же Т-лимфоцит встречается с незрелой дендритной клеткой, то он не активируется, а самоуничтожается или же супрессируется. Это неактивное состояние Т-клетки называется анергией . Таким способом в организме предотвращается патогенное действие аутореактивных Т-лимфоцитов, которые по тем или иным причинам выжили в ходе селекции в тимусе .

Всё вышесказанное относится к αβ-Т-лимфоцитам , однако существует еще один тип Т-клеток - γδ-T-лимфоциты (название определяет состав белковых молекул, образующих TCR) . Они относительно малочисленны и в основном заселяют слизистую оболочку кишечника и другие барьерные ткани, играя важнейшую роль в регуляции состава обитающих там микробов. У γδ-T-клеток механизм распознавания антигенов отличается от αβ-Т-лимфоцитарного и не зависит от TCR .

B-лимфоциты

В-лимфоциты несут на своей поверхности В-клеточный рецептор . При контакте с антигеном эти клетки активируются и превращаются в особый клеточный подтип - плазматические клетки , обладающие уникальной способностью секретировать свой B-клеточный рецептор в окружающую среду - именно эти молекулы мы называем антителами . Таким образом, как BCR, так и антитело имеет сродство к распознаваемому им антигену, как бы «прилипает» к нему. Это дает возможность антителам обволакивать (опсонизировать) клетки и вирусные частицы, покрытые молекулами антигена, привлекая макрофаги и другие иммунные клетки для уничтожения патогена. Антитела также умеют активировать специальный каскад иммунологических реакций, называемый системой комплемента , который приводит к перфорации клеточной мембраны патогена и его гибели.

Для эффективной встречи клеток адаптивного иммунитета с дендритными клетками, несущими в составе MHC чужеродные антигены и поэтому работающими «связными», в организме существуют специальные иммунные органы - лимфоузлы . Распределение их по организму неоднородно и зависит от того, насколько уязвимой является та или иная граница. Бόльшая их часть находится вблизи пищеварительного и дыхательного трактов, ведь проникновение патогена с пищей или вдыхаемым воздухом - наиболее вероятный способ заражения.

Видео 4. Перемещение Т-клеток (обозначены красным ) по лимфоузлу. Клетки, образующие структурную основу лимфоузла и стенки сосудов, помечены зеленым флуоресцентным белком . Видео снято при помощи прижизненной двухфотонной микроскопии.

Развитие адаптивного иммунного ответа требует достаточно много времени (от нескольких дней до двух недель), и для того чтобы организм мог защищаться от уже знакомой инфекции быстрее, из Т- и В-клеток, участвовавших в прошлых битвах, формируются так называемые клетки памяти . Они, подобно ветеранам, в небольшом количестве присутствуют в организме, и если появляется знакомый им патоген, вновь активируются, быстро делятся и целой армией выходят на защиту границ.

Логика иммунного ответа

Когда организм атакуют патогены, в бой в первую очередь вступают клетки врожденного иммунитета - нейтрофилы, базофилы и эозинофилы. Они выделяют вовне содержимое своих гранул, способное повредить клеточную стенку бактерий, а также, например, усилить кровоток, чтобы как можно больше клеток поспешило в очаг инфекции.

Одновременно с этим дендритная клетка, поглотившая патоген, спешит в ближайший лимфоузел, где передает информацию о нём находящимся там Т- и В-лимфоцитам. Те активируются и путешествуют до местонахождения патогена (рис. 2). Битва разгорается: Т-киллеры при контакте с зараженной клеткой убивают ее, Т-хелперы помогают макрофагам и В-лимфоцитам осуществлять их механизмы защиты. В итоге патоген гибнет, а победившие клетки отправляются на покой. Бόльшая их часть погибает, но некоторые становятся клетками памяти, которые поселяются в костном мозге и ждут, когда их помощь снова понадобится организму.

Рисунок 2. Схема иммунного ответа. Проникший в организм патоген обнаруживается дендритной клеткой, которая движется в лимфоузел и там передает информацию о враге Т- и В-клеткам. Те активируются и выходят в ткани, где реализуют свою защитную функцию: В-лимфоциты продуцируют антитела, Т-киллеры при помощи перфорина и гранзима В осуществляют контактный киллинг патогена, а Т-хелперы продуцируют цитокины, помогающие другим клеткам иммунной системы в борьбе с ним.

Так выглядит схема любого иммунного ответа, однако она может заметно видоизменяться в зависимости от того, какой именно патоген проник в организм. Если мы имеем дело с внеклеточными бактериями, грибами или, скажем, глистами, то основными вооруженными силами в этом случае будут эозинофилы, В-клетки, продуцирующие антитела, и Th2-лимфоциты, помогающие им в этом. Если же в организме поселились внутриклеточные бактерии, то на помощь в первую очередь спешат макрофаги, которые могут поглотить инфицированную клетку, и Th1-лимфоциты, помогающие им в этом. Ну а в случае вирусной инфекции в бой вступают NK-клетки и Т-киллеры, которые уничтожают зараженные клетки методом контактного киллинга.

Как мы видим, многообразие типов иммунный клеток и механизмов их действия неслучайно: на каждую разновидность патогена у организма припасен свой эффективный способ борьбы (рис. 3).

Рисунок 3. Основные типы патогенов и клетки, принимающие участие в их уничтожении.

А теперь все вышеописанные иммунные перипетии - в коротком видео.

Видео 5. Механизм иммунного ответа.

Громыхает гражданская война...

К сожалению, ни одна война не обходится без потерь среди гражданского населения. Долгая и интенсивная защита может дорого стоить организму, если агрессивные высокоспециализированные войска выйдут из-под контроля. Повреждение собственных органов и тканей организма иммунной системой называется аутоиммунным процессом . Заболеваниями этого типа страдает около 5% человечества.

Селекция Т-лимфоцитов в тимусе, а также удаление аутореактивных клеток на периферии (центральная и периферическая иммунологическая толерантность), о которых мы говорили ранее, не могут полностью избавить организм от аутореактивных Т-лимфоцитов. Что же касается В-лимфоцитов, вопрос о том, насколько строго осуществляется их селекция, до сих пор остается открытым. Поэтому в организме каждого человека обязательно присутствует множество аутореактивных лимфоцитов, которые в случае развития аутоиммунной реакции могут повреждать собственные органы и ткани в соответствии со своей специфичностью.

За аутоиммунные поражения организма могут быть ответственны как Т-, так и В-клетки. Первые осуществляют непосредственное убийство безвинных клеток, несущих на себе соответствующий антиген, а также помогают аутореактивным В-клеткам в продукции антител. Т-клеточный аутоиммунитет хорошо изучен при ревматоидном артрите, сахарном диабете первого типа, рассеянном склерозе и многих других болезнях.

В-лимфоциты действуют куда более изощренно. Во-первых, аутоантитела могут вызывать гибель клеток, активируя на их поверхности систему комплемента или же привлекая макрофаги. Во-вторых, мишенями для антител могут стать рецепторы на поверхности клетки. При связывании такого антитела с рецептором тот может или блокироваться, или же активироваться без реального гормонального сигнала. Так происходит при болезни Грейвса : В-лимфоциты производят антитела против рецептора к ТТГ (тиреотропному гормону), мимикрируя действие гормона и, соответственно, усиливая продукцию тиреоидных гормонов . При миастении гравис антитела против рецептора к ацетилхолину блокируют его действие, что приводит к нарушению нейромышечной проводимости. В-третьих, аутоантитела вместе с растворимыми антигенами могут образовывать иммунные комплексы, которые оседают в различных органах и тканях (например, в почечных клубочках, суставах, на эндотелии сосудов), нарушая их работу и вызывая воспалительные процессы.

Как правило, аутоиммунное заболевание возникает внезапно, и невозможно точно определить, что стало его причиной. Считается, что триггером для запуска может послужить практически любая стрессовая ситуация, будь то перенесенная инфекция, травма или переохлаждение. Значительный вклад в вероятность возникновения аутоиммунного заболевания вносит как образ жизни человека, так и генетическая предрасположенность - наличие определенного варианта какого-либо гена.

Предрасположенность к тому или иному аутоиммунному заболеванию часто ассоциирована с определенными аллелями генов MHC, о которых мы уже много говорили. Так, наличие аллеля HLA-B27 может служить маркером предрасположенности к развитию болезни Бехтерева , ювенильного ревматоидного артрита, псориатического артрита и других заболеваний. Интересно, что присутствие в геноме того же самого HLA-B27 коррелирует с эффективной защитой от вирусов: например, носители этого аллеля имеют пониженные шансы заразиться ВИЧ или гепатитом С , . Это еще одно напоминание о том, что чем агрессивнее воюет армия, тем вероятнее потери среди гражданского населения.

Кроме того, на развитие болезни может влиять уровень экспрессии аутоантигена в тимусе. Например, продукция инсулина и, соответственно, частота презентации его антигенов Т-клеткам различается от человека к человеку. Чем она выше, тем ниже риск развития сахарного диабета первого типа, так как это позволяет удалить специфичные к инсулину Т-лимфоциты.

Все аутоиммунные заболевания можно разделить на органоспецифические и системные . При органоспецифических болезнях поражаются отдельные органы или ткани. Например, при рассеянном склерозе - миелиновая оболочка нейронов, при ревматоидном артрите - суставы, а при сахарном диабете первого типа - островки Лангерганса в поджелудочной железе. Системные аутоиммунные заболевания характеризуются поражением многих органов и тканей. К таким болезням относятся, например, системная красная волчанка и первичный синдром Шегрена, поражающие соединительную ткань. Более подробно об этих заболеваниях будет рассказано в других статьях спецпроекта.

Заключение

Как мы уже убедились, иммунитет - это сложнейшая сеть взаимодействий как на клеточном, так и на молекулярном уровнях. Создать идеальную систему, надежно защищающую организм от атак патогенов и одновременно ни при каких условиях не повреждающую собственные органы, не смогла даже природа. Аутоиммунные заболевания - побочный эффект высокой специфичности работы системы адаптивного иммунитета, те издержки, которыми нам приходится платить за возможность успешно существовать в мире, кишащем бактериями, вирусами и другими патогенами.

Медицина - творение рук человека - не может в полной мере исправить то, что было создано природой, поэтому на сегодняшний день ни одно из аутоиммунных заболеваний полностью не излечивается. Поэтому цели, которых стремится достичь современная медицина, - это своевременная диагностика заболевания и эффективное купирование его симптомов, от которого напрямую зависит качество жизни пациентов. Однако для того чтобы это было возможно, необходимо повысить информированность населения об аутоиммунных заболеваниях и способах их лечения. «Предупрежден - значит вооружен!» - вот девиз общественных организаций, созданных для этого по всему миру.

Литература

  1. Mark D. Turner, Belinda Nedjai, Tara Hurst, Daniel J. Pennington. (2014). Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease . Biochimica et Biophysica Acta (BBA) - Molecular Cell Research . 1843 . Focus on 50 years of B cells . (2015). Nat. Rev. Immun. 15 ;

Бешеные псы: иммунитет против хозяина January 20th, 2017

Иммунитет может быть опасен для здоровья, превратить молодого человека в инвалида, лишить потомства или даже убить. Сегодня я расскажу о том, как иммунитет учится отличать свое от чужого и почему он, словно бешеный пес, иногда бросается на хозяина - свой собственный организм, вызывая рассеянный склероз, ревматоидный артрит, псориаз и другие неизлечимые аутоиммунные заболевания.

Задайтесь вопросом: как иммунитет отличает свои клетки и ткани от чужеродных инфекций? В компьютерных антивирусах этот вопрос решается ежедневным скачиванием обновленных баз данных с кодами всех известных вирусов. Но у иммунитета нет интернет-доступа к базам данных ВОЗ, а в наш геном не поместится информация обо всех возможных инфекциях. Кроме того вирусы и бактерии быстро мутируют и буквально в течении болезни способны уйти из-под надзора атакующих антител.

Природа решила эту проблему принципиально иначе, нежели разработчики антивирусных программ. Представьте себе, что мастер изготовил миллиард разных ключей - каждый хотя бы чуть-чуть, но отличается от другого. Имея такую связку, можно открыть практически любой замок в мире.

Природа поступила точно так. Еще внутриутробно иммунная система создала миллиарды лимфоцитов, каждый из которых был снабжен уникальным рецептором. Представьте себе миллиарды лимфоцитов и у каждого есть свой уникальный рецептор - своего рода "ключ", который подходит только в один предназначенный для него "замок". Замком в данной аналогии будет являться практически любая белковая молекула, которую только может придумать природа создавая вирусы, бактерии или человека.

Однако такое миллирды уникальных рецепторов невозможно закодировать даже в бесконечно большом геноме. Природа, как всегда, сэкономила и поступила проще. Наш ключный мастер сначала изготовил миллиард ключей-копий по одному шаблону, а затем случайным образом нанес прорези и дырочки сделав каждый ключ уникальным. По этой аналогии гены рецепторов идентичны во всех лимфоцитах (как и весь геном в каждой клетке организма). Но в процессе созревания лимфоцита отдельные участки генов его рецептора разрезаются ферментами - отдельные части выбрасываются, другие меняются местами и сшиваются вновь образуя уникальный код . Затем с уже уникального гена синтезируется РНК, которая служит матрицей для синтеза неповторимого рецептора в каждом лимфоците. Схема только кажется сложной, но на самом деле все тупо и просто:

Таким образом еще до рождения мы имеем огромную связку из миллиардов ключей - каждый из которых отличается от всех остальных. Иммунологи называют это "репертуаром иммуноглобулинов". Вы наверняка слышали про иммуноглобулины свободно плавающие в крови (антитела) - это секретируемые лимфоцитами аналоги своих рецепторов с той же, что и рецепторы, специфичностью к одному и тому же антигену. Но сами антитела выйдут на поле боя только после рождения - в стерильной утробе они не нужны. А пока мы продолжим говорить об их аналогах - иммуноглобулиноподобных рецепторах встроенных в мембраны лимфоцитов.

Иммунитет на этом этапе еще совсем слеп. С инфекциями он еще не сталкивался, но собственные ткани организма содержат огромное разнообразие белков-"замков", к которым лимфоциты то и дело пытаются подобрать свои индивидуальные рецепторы-"ключики". А так как их репертуар очень разнообразен, то многим лимфоцитам (столько сколько различных белков в организме) удается связаться с белками собственного организма, которых иммунологи называют аутоантигенами (ауто - свой). Однако без гуморальной поддержки (как это бывает во взрослом организме) связавшиеся с аутоантигенами лимфоциты не активируются, а сразу гибнут.

Таким образом репертуар сокращается - погибают все лимфоциты способные своим рецептором распознать что-либо. А этим "что-либо" в стерильных условиях внутриутробной жизни могут быть только аутоантигены. Например, если ввести в эмбрион антигены вируса гепатита, то все связавшие его лимфоциты вымрут, и после рождения у такого человека не будет развиваться иммунный ответ против данной инфекции или на вакцину. Иммунологи назвали этот процесс "негативный отбор", благодаря которому вы родились без лимфоцитов способных нападать на белки собственного организма. Если продолжить аналогию с ключами, то те ключи, которые подошли к своим замкам, при проворачивании обламываются навсегда исключая возможность открыть дверь.

Однако почему аутоиммунные заболевания становятся возможными? Одна из причин нападения иммунитета на хозяина заключается в том, что некоторые белки организма впервые синтезируются уже после рождения, когда негативный отбор лимфоцитов уже закончен. Таким образом в нашем организме присутствуют лимфоциты способные связать аутоантигены и повреждать клетки и ткани вызывая тяжелые болезни.

Например, белок миелин, ускоряющий передачу сигнала в нервной системе, образуется в ЦНС после рождения , поэтому специфичные к нему лимфоциты благополучно переживают негативный отбор. В зрелом возрасте в результате нарушения гематоэнцефалического барьера эти лимфоциты и их антитела проникают в ЦНС и повреждают миелиновые оболочки волокон - развивается рассеянный склероз.

Мелкая моторика требует стабильной обратной связи, непрерывно передающей информацию о положении конечностей и мышц языка в пространстве. Обратная связь обеспечивает коррекцию всех нюансов движений. Чем медленнее обратная связь, тем реже происходит коррекция движений - пальцы дрожжат и совершают ошибки, а речь коверкается. Это одни из симптомов рассеянного склероза.

Другой пример таких белков - рецептор на поверхности сперматозоида, который позволяет ему проникнуть в яйцеклетку. Этот рецептор появляется с началом полового созревания. При нарушении гематотестикулярного барьера специфичные к спермиям лимфоциты и их антитела по ошибке принимают их за микробов. Спермии связанные антителами склеиваются своими головками и теряют способность к оплодотворению.

Есть и такие примеры патогенеза аутоиммунных заболеваний, когда мишенью для лимфоцитов становится святая-святых ДНК. Да, ДНК присутствует в организме с самого зачатия, но иммунная система эмбриона не имеет доступа к содержимому клеточного ядра, поэтому способные связывать ДНК лимфоциты благополучно переживают негативный отбор. Примером такого заболевания является псориаз, при котором ДНК из разрушенных клеток кожи становится доступной для распознавания лимфоцитами. Здесь необходимо пояснить, что лимфоциты связывают антигены не непосредственно, а через посредников - фагоцитов, которые сначала поглощает антиген, затем внутриклеточно связывают его молекулой HLA и выводит данный комплекс на свою поверхность. Только в комплексе с HLA антиген (в данном случае аутоантиген - ДНК) может быть распознан лимфоцитом.

Однако почему данный процесс не запускается при обычных травмах, когда из разрушенных клеток выделяется ДНК, но возможен при псориазе? Возможно, это связано с генетическими особенностями людей с псориазом. Больше половины из них являются носителями варианта гена, кодирующего структуру молекулы HLA, которая как раз "передает" антигены лимфоцитам для связывания. В тоже время у людей без псориаза данный вариант гена практически не встречается. Согласно гипотезе, молекулы HLA у здоровых людей не способны связывать ДНК и передавать их для распознавания лимфоцитам, а у вариант молекулы HLA у пациентов с псориазом "отлично" с этим справляется.

Еще один пример патогенеза аутоиммунного заболевания наблюдается при ревматоидном артрите, при котором иммунитет возбуждается на белки соединительных тканей суставов, которые, как и ДНК, присутствуют на самых ранних этапах эмбриогенеза. Более того, специфичные к ним лимфоциты благополучно погибают благодаря негативному отбору. Однако данные белки в процессе воспаления чуть-чуть денатурируют, и этого "чуть-чуть" достаточно для распознавания измененного белка другими лимфоцитами, у которых "чуть-чуть" другой рецептор в отличие от погибших в утробе коллег. При ревматоидном артрите в белках соединительной ткани сустава происходит превращение аминокислоты аргинин в аминокислоту цитруллин, которая вообще не входит в число 20 аминокислот организма.

Еще более хитрый вид патогенеза, когда вирус или бактерия имеет белки похожие на белки организма. Это называется антигенная мимикрия, которая позволяет микроорганизму снизить внимание со стороны иммунной системы. Например, стрептококк имеет на своей поверхности белок похожий на белок клеток сердечной мышцы. Однако небольших отличий структуры бактериального белка от таковых в белке организма иногда достаточно для активации лимфоцитов против него. Активированные лимфоциты в условиях воспаления могут неспецифически связывать другие схожие белки собственного организма - в данном случае белок клеток сердца. Данный примера патогенеза можно сравнить с теми редкими случаями, когда чужим, но очень похожим на свой, ключом можно открыть свою дверь.

Таким образом есть три основания для нападения иммунитета на собственный организм, но во всех случаях проблема не в бешенстве пса, а чаще всего в хозяине:
1) разобщение во времени негативного отбора и момента начала биосинтеза белка;
2) мутации генов HLA, которые дразнят иммунитет незнакомыми для него молекулами;
3) денатурация молекул белка, после чего они становятся "чужими" для иммунитета;
4) мимикрия вирусов и бактерий.

По этим причинам ЦНС, яички, суставы, глаза и ряд других органов иммунологи называют иммунопривилегированными - иммунные процессы в них подавляются организмом разными способами. Например, один из механизмов толерантности иммунной системы к данным органам заключается в их постоянной гипотермии, которая снижает силу связывания антител и рецепторов лимфоцитов с собственными белками. Я ранее подробно рассказывал как обеспечивается охлаждение и . Обязательно почитайте, если боитесь рассеянного склероза и бесплодия.

Я намеренно опустил множество деталей в пользу лучшего понимая столь сложной темы. Если что-то требует уточнений - спрашивайте, и я внесу ясность в тексте! Мне важно чтобы материал оказался понятен любому читателю, так как уже готовлю следующие серии "Бешеных псов", в которых расскажу о дальнейшем развитии и поведения иммунитета при аллергии, астме и инфекционных заболеваниях. Чтобы не пропустить, Подписывайтесь на самый читаемый блог о медицине! Если у вас нет аккаунта в ЖЖ, подписывайтесь на обновления в

Иммунная система защищает нас 24 часа в сутки, однако, при определенных нарушениях начинает атаковать собственный организм.

Как работает иммунная система

Вы этого не замечаете, но внутри вас постоянно происходит борьба с чужеродными завоевателями. Миллионы бактерий, вирусов и так и норовят поселиться на всем готовом, и вести свою бурную жизнедеятельность за ваш же счет. Поэтому защитные механизмы организма постоянно должны быть на чеку, и в случае опасности немедля реагировать. Иммунная система - это своего рода министерство обороны, которое нещадно уничтожает микроскопических «оккупантов» и «нелегальных мигрантов». Чтобы вы не делали, чем бы вы ни занимались, многочисленная армия иммунных клеток готова сражаться с неприятелем. Причем на каждый конкретный тип чужеродного возбудителя (антигена) продуцируются специфические «наемные убийцы» (антитела). Даже во время сна, каждая клетка тела человека надежно защищена.

Возникает вопрос: каким же образом иммунитет уничтожает «все чужое», а свои собственные ткани и органы остаются невредимыми? Все дело в том, что на поверхности каждой клетки организма есть специальные белки - нечто вроде удостоверения личности. Иммунитет способен распознавать эти белки, как свои. Таким образом, здоровая клетка, предъявив иммунитету свою «корочку» спокойно занимается своими делами, не опасаясь насильственных действий. Это явление известно как «иммунологическая толерантность».

Как только иммунные клетки встречаются с чужеземцами без «документов», немедленно начинается операция по обезвреживанию противника.

Иммунолог

Процесс образования аутоантител происходит постоянно, но существует система устойчивости (толерантности) к этим антителам. Когда же происходит срыв толерантности, то начинается болезнь. При этом могут поражаться кожа, сосуды, суставы и все внутренние органы по отдельности или в сочетаниях. Коварность этих недуг в том, что их часто невозможно отличить от инфекционных или соматических болезней, и подтвердить наличие аутоиммунного заболевания можно только лабораторно.

Когда реакция чрезмерна

Сегодня в основном все озадачены тем, как усилить иммунную систему. Мы то и дело при любом удобном случае пытаемся всеми силами укрепить здоровье, принимая растительного либо синтетического происхождения. К сожалению, кроме проблемы иммунодефицита , также есть опасность перекоса и в другую сторону. Определенные сбои в организме приводят к тому, что иммунная система, наше министерство обороны, начинает бороться с собственным организмом, не отличая «своих» от «чужих». И таким образом верный защитник становится страшным монстром, пожирающим все на своем пути. Возникает так называемый , что ведет к серьезным заболеваниям. Ревматоидный артрит, системная волчанка, (поражение щитовидной железы), гломерулонефрит (поражение почек), рассеянный склероз - вот далеко не весь перечень этих болезней.

Долгое время не удавалось понять причину этих болезней. Как варианты лечения использовались местные или общие противовоспалительные средства, которое естественно оказывались неэффективными.

И только полвека назад медицина потихоньку начала приходить к разгадке аутоиммунных заболеваний. Хотя до сих пор эта категория болезней таит в себе много загадочного и непонятного. К примеру, относительно недавно выяснилось, что наличие в организме аутоагрессивных антител (поражающих клетки собственного организма) вовсе не является патологией!

Возникает закономерный вопрос: зачем природа создала в нашем организме систему, направленную против нас? Оказывается, аутоантитела выполняют очень важную функцию по очистке организма от устаревших клеток. Ведь за всю жизнь мы буквально несколько раз перерождаемся, на место старых клеток приходят новые и т.д.

Причинами этих болезней могут быть как генетические, так и факторы окружающей среды. Однако часто приходится говорить об их сочетании, т.к. наследственность может не реализоваться. Среди причин нарушения аутоиммунного процесса стоит выделить следующие:

Однако стоить иметь в виду, что у каждого пациента будет свой комплекс вышеперечисленных факторов.

Сложности лечения

Поиск эффективного лечения аутоиммунных заболеваний ведется по нескольким направлениям. В последнее время ученые даже подумывают о применении генотерапии, благодаря которой можно будет заменить дефектный ген. Однако данная методика лечения войдет в практику еще не скоро, к тому же не всегда причиной конкретного недуга служат мутации в геноме.

На сегодняшний день в протоколы лечения, преимущественно, включены препараты подавляющие иммунную систему или же изменяющие иммунный ответ. В зависимости от конкретного случая могут применятся гормоны, иммунодепрессанты, препараты на основе моноклональных антител. В нашей стране также применяется и плазмоферез (отбор крови с последующим отделением плазмы).

Профилактика снижения иммунитета

Настоящей проблемой в лечении аутоиммунных заболеваний является то, что зачастую известные методы действуют отнюдь не на причину болезни, а на весь организм в целом. Кроме того, что подавляется активность аутоиммунных процессов, лекарственные препараты заметно снижают и нормальные защитные функции организма. Конечно же такая ситуация не может никого устраивать, поэтому ведутся активные работы по разработке эффективных средств лечения. И одним из обнадеживающих методов стала Т-клеточная вакцинация . Суть способа состоит в том, что из агрессивных иммунных клеток готовится вакцина, и при введении ее в организм, иммунитет волей-неволей начинает бороться с агрессором. В настоящее время Т-клеточная вакцинация применяется в лечении рассеянного склероза и ревматоидного артрита.

Иммунная система – это настоящая защита нашего организма, она оберегает человеческий организм от атак вирусов, грибков, бактерий и других патогенных организмов, и веществ. Иммунитет способен уничтожать клетки организма, если они переродились в злокачественную опухоль. Но иногда иммунная система не может справиться со злокачественной опухолью, например, это может быть генетическая причина, и опухоль начинает расти. Большая опухоль может влиять на иммунитет таким образом, что он перестает реагировать на злокачественное образование. При этом опухоль может повлиять на «защитные» клетки, и они начинают уничтожать организм хозяина. Если медики смогут понять, как опухоль подавляет действие иммунной системы, то это станет прорывом в лечении онкологических заболеваний.

Иммунитет и опухоль

Долго медики считали, что иммунитет плохо реагирует на раковые клетки. Потому что последние очень похожи на нормальные клетки. Иммунная система лучше всего противостоит злокачественным опухолям, которые имеют вирусное происхождение, частота возникновения вирусных опухолей возрастает у людей, имеющих иммунодефицит. Через некоторое время медикам стало ясно, что не только «похожесть» клеток является причиной плохой борьбы иммунитета с раковыми опухолями.

Выяснилось, что злокачественные опухоли не только подавляют иммунные клетки рядом с собой, но и перепрограммирует их, иммунные клетки начинают «обслуживать» рак. Перерождение клетки иммунитета имеет несколько стадий, сначала она активно борется с онкологией, но потом, делясь становится частью опухоли. Ученые назвали этот процесс «иммуноредактирование».

Первой стадией иммуноредактирования является процесс устранения. Внешние канцерогенные факторы или мутации влияют на нормальную клетку, и она начинает «трансформироваться». Клетка обретает способность к неограниченному делению, при этом она перестает реагировать на регуляторные сигналы, которые исходят от организма. Клетка начинает синтезировать на своей поверхности «опухолевые антигены» и затем посылает «сигналы опасности».
На эти сигналы реагируют макрофаги и Т-клетки. «Посланцы» организма эффективно уничтожают трансформированные клетки, и развитие опухоли прерывается. Но случается так, что «предраковые» клетки вызывают иммунный ответ. Трансформированная клетка получается слабой, она синтезирует меньшее количество опухолевых антигенов. Такие клетки плохо распознаются иммунной системой, клетки-«предатели» переживают первый иммунный ответ, а затем продолжают свое деление.

Наступает вторая стадия взаимодействия организма и опухоли. Которая носит название «стадия равновесия». Иммунная система уже не может полностью уничтожить опухоль, но ограничивает ее рост. В таком состоянии опухоли «живут» в организме годами, они не обнаруживаются при обычной диагностике.

Микроопухоли не являются статичными, свойства клеток, из которых они состоят постепенно меняются в результате воздействия мутаций. Далее наступает отбор, продолжать существовать остаются те клетки, которые могут сильнее всего противостоять воздействию иммунной системы. Появляются клетки-иммунопресоры. Эти клетки пассивно избегают уничтожения и подавляют иммунный ответ. В результате такой эволюционный процесс приводит к тому, что организм начинает умирать от рака.

Начинается третья стадия, которая называется «стадия избегания». Опухоль становится практически нечувствительной к воздействию иммунной системы, опухоль начинает обращать активность иммунных клеток себе на пользу. Опухоль дает метастазы и растет, наступает момент, когда медики могут диагностировать опухоль. Предыдущие стадии протекают незаметно, представления о них – лишь интерпретация нескольких косвенных данных.

Значение двоякого поведения иммунного ответа в канцерогенезе

На сегодняшний день можно встретить много научных статей, в которых описывается борьба иммунной системы со злокачественными опухолями. Почти такое же количество научного материала описывает негативное влияние присутствия иммунных клеток в опухоли, которые провоцируют ее рост и появлению метастаз. Концепция иммуноредактирования объяснила изменение поведения клеток иммунной системы.

Клетки иммуннойсистемы очень пластичные, поэтому они могут переориентироваться на сторону опухоли. Иммунный ответ, в нашем понятии, это борьба организма, но помимо борьбы организм должен тратить силы и на устранение повреждений, которые остаются после уничтожения вредоносных клеток. Рак влияет на организм таким образом, что лейкоциты крови начинают воспринимать раковые клетки так, как будто им нужна помощь и начинают их лечить.

Возьмем для примера макрофагов, которых называют «клетками-войнами» или «клетками-целителями». Опухоль «обманывает» макрофагов почти также, как лейкоциты. Макрофаги были открыты Мечниковым, эти клетки способны поглощать вредоносные вещества. Это явление называется «фагоцитоз», которое стало основой всей иммунологии. Макрофаги обнаруживают «врага» и устремляются к нему, кроме этого, за собой они привлекают и другие клетки, которые отвечают за защиту организма. После уничтожения «интервентов» макрофаги помогают другим клеткам расчищать «поле боя», они вырабатывают вещества, способствующие быстрому заживлению повреждений. Именно эту способность макрофагов раковые клетки используют для собственной пользы.

Различают две группы макрофагов, каждая группа имеет свою преобладающую активность. М1-макрофаги «классически активированные», они отвечают за уничтожение посторонних объектов, в том числе и раковые клетки. М1-макрофаги могут привлекать к уничтожению и другие клетки крови, например, Т-киллеров. М2-макрофаги – это «целители», они отвечают за регенерацию тканей (восстановление).

Если в опухоли присутствует большое число М1-макрофагов, то от этого она плохо растет, в результате может наступить полная ремиссия. М2-макрофаги, наоборот, выделяют факторы роста, которые способствуют делению раковых клеток. Эксперименты показали, что вокруг опухоли всегда находится многоМ2-клеток. Под воздействием М2-макрофагов М1-макрофаги перепрограммируются и превращаются в первых. «Убийцы» больше не могут наносить повреждения, синтезировать антиопухолевые цитокины, а начинают выделять вещества, способствующие росту опухоли.

Белки семейства NF-kB являются ведущими «программистами», они контролируют множество генов, которые так необходимы для активации М1-макрофагов. Важными представителями семейства являются р50 и р65, которые образуют гетеродимер р65/р50, влияющий на активацию генов в М1-макрофагах. Гетеродимер р65/р50 активирует в макрофагах М1 TNF, который отвечает на острый воспалительный процесс, хемокины, интерлейкины, цитокины. Возбуждение этих генов в М1 привлекает к очагу большое количество иммунных клеток.Гомодимер семейства NF-kB или р50/р50 связывается с промоторами и блокирует возбуждение. Градус воспаления снижается. Очень важно, чтобы в организме присутствовало равновесие между гетеродимером и гомодимером. Ученые доказали, что опухоль нарушает синтез p65 в М1 и способствует накоплению комплекса р50/р50.

Реактивация иммунного ответа

Получается, то вокруг опухоли присутствуют клетки, которые уничтожают ее, и. которые ее восстанавливают. Будущее рака будет зависеть от того куда сдвинется пропорция.

Эксперименты современной медицины показали, что процесс «перепрограммирования» обратим. Сегодня самым перспективным направлением в онко-иммунологиии считается разработка идеи, которая сможет реактивировать М1-макрофагов.

Некоторые разновидности опухолей, например, меланомы, прекрасно лечатся при помощи реактивации. Молекула лактата появляется в опухолях при недостатке кислорода из-за быстрого роста. Лактат попадает в мембранные каналы М1-макрофагов. После этого макрофаг изменяется, онкологическая терапия будет заключаться в блокировке каналов М1.

Если ученые научатся управлять иммунным ответом, как управляют им опухоли, то настанет время, когда человек сможет победить рак.

Ученые надеются найти причины аутоиммунных заболеваний на молекулярно-генетическом уровне.
Фото Reuters

Иммунная система призвана защищать организм. Но в некоторых ситуациях функционирование ее нарушается, и факторы иммунной защиты становятся агрессорами по отношению к собственным тканям организма. Лечение таких аутоиммунных заболеваний представляет большую трудность: основной целью терапии является баланс между снижением активности иммунной системы против собственного организма и сохранением иммунитета.

Одно из таких заболеваний – системная красная волчанка. Это тяжелое системное заболевание соединительной ткани, при котором поражаются различные внутренние органы. Болезнь известна с древности, и название получила из-за характерной сыпи на переносице и щеках, напоминающих укусы волка. 90% больных составляют женщины в возрасте 20–40 лет. В России количество пациентов с системной красной волчанкой ежегодно увеличивается и уже сегодня приближается к 80 тыс., а у 40 тыс. заболевание неуклонно прогрессирует и приводит к ранней инвалидизации и смерти.

Причина возникновения волчанки неизвестна. В развитых странах в среднем через 3,5 года после постановки диагноза 40% больных вынуждены прекратить работу. У больных наблюдаются поражения кожи, суставов, мышц, слизистых оболочек, сердца, легких, нервной системы, более чем у половины – поражения почек. Периоды обострения сменяются ремиссией, но встречается и активное постоянно прогрессирующее течение.

Проблемам системной красной волчанки была посвящена конференция, проходившая в НИИ ревматологии РАМН в Москве.

Молекулярно-генетические основы болезни изучены довольно плохо, поэтому специфического лечения до недавнего времени не существовало. Академик РАМН Евгений Насонов, директор НИИ ревматологии РАМН, подчеркнул, что для лечения системной красной волчанки используется весь арсенал применяемых в ревматологии лекарственных средств, включая нестероидные противовоспалительные препараты, гормоны, средства, препятствующие делению клеток, противомалярийные препараты и даже экстракорпоральные методы очищения крови. Большинство из них применяются при системной красной волчанке по не зарегистрированным (off-label) показаниям.

Понимание необходимости совершенствования фармакотерапии системной красной волчанки стало стимулом для проведения широкомасштабных клинических исследований различных средств. И в первую очередь – генно-инженерных биологических препаратов.

Иммунологический контроль над патогенетическими механизмами стал возможен с открытием молекулярного пути, воздействуя на который удается в какой-то степени сдержать развитие системной красной волчанки. В этом пути участвует белок, получивший название стимулятора В-лимфоцитов (BLyS), – из семейства фактора некроза опухолей. Было обнаружено, что подавление BLyS позволяет несколько сдержать разыгравшуюся иммунную систему.

Исследователи, желая специфически блокировать BLyS, сделали ставку на человеческое моноклональное антитело, названное белимумаб. На фоне его применения наблюдалось снижение общей частоты обострений и тяжелых обострений болезни.

Академик Евгений Насонов отметил, что в клиническом исследовании моноклонального антитела белимумаба принимали участие российские ревматологические центры Москвы, Санкт-Петербурга и Ярославля. Его разработка неразрывно связана с прогрессом фундаментальных исследований в области иммунопатологии заболеваний человека и является ярким примером практической реализации концепции трансляционной медицины. Можно говорить о том, что открывается новая эра в лечении системной красной волчанки, связанная с началом широкого применения генно-инженерных биологических средств и созданием нового класса препаратов – ингибиторов BLyS, которые могут иметь важный терапевтический потенциал не только при системной красной волчанке, но и при широком круге аутоиммунных заболеваний человека.

Понравилась статья? Поделиться с друзьями: